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S- 

A simple 8[3curat@ nethod is preeented for approxhately  deter- 
mining the minimum mment of iner t ia  of an arbi t rar i ly  shaped area, 
such as the  section of a hollow turbine  blade. The praotical  appli- 
cation of this method involves  a abple  routine tabular .~ffooednre. 
Incidental t o  finding  the min- mcent of inertia, t h i s  tabular 
procedure also gives the area, the  position of the center of gravity, 
the mmznt of iner t ia  about any deeired axio, the product of inertia, 
and the  principal axe8 of inertia.  Two e-e are worked aut in 
detail.: an ell ipse tilted at an angle of 30 , a d  an aWfoi1 eeoticm. 

In  general, ccrmpartson v l t h t h e  known values for the ell ipse 
showed agreenent t o  vithin 0.5 percent. T h i s  IIlethoa ma a le0  used t o  
calculate  the  variation  in minimum m o m &  of fnertia along the length 
of a typical hollow turbine  blade. 

In several types of problems involving  vibrations of an elast ic  
body, it is necessary t o  know the area, the plane produo% and the 
mn=nt of inertia about a given axis, the minimnm m-nt of inertia, 
and the  vartatione of these  quantitiee along an axis thraugh the body. 
The most obvious method, that of "counting squares", can be applied 
to obtain  the m a ,  the product of inertia, and the mcrment of iner t ia  
abaut a given ar ie  . The minhm rncsnent of inertia be approxi- 
mated by a trial-and-error prouedure of passing e e v e d  axe8 though 
the  center of gravity and caloulating  the molllent of inertia abmt 
each of these axes. This methd i e  long and laboriaus and the 
sccuracy attained depeads a great deal upon the skill of the operator. 
A more expedient method,  which is in general uae, is that of 
numerical i n t e p t l o n .  
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Ae a reeulf of an irrveetfgation, conducted a t  the HACA hwls 
laboratory, of the vibration problem of ccglpl.e8eor sad turbine 
blades in gene& d hollow turbine blades i n  perticular, 8 simple 
accurate m t h d  of oalculating the mcanent of inertia about a given 
axis and the mirclmum mcaraent of inertia of arbitrarily shaped sec= 
tione ha8 been developed. T h i s  mthcd ccaribinee the well-known 
theories of. mccplente of inertia and numerioal integration to provide 
a eimple straightforward tabnlebl. prooedure for cetlmlhtklg the 
section properties. The area, the  poaition of the center of 
grebvitr, the m m t  of im??bi& 8bWt any given UXfB, and the pro- 
duct of Inertia are obtained imidental to f" the miniman 
moment of Inertia. The vsLues obtain& are dependable and may be 
calculated to any reasonable d e p e  of aoouracy Yithcut llndlrlp 
itlcreaeing the amount of labor.  The procedure iB illuetrated by 
two simple examples, tm eLlipee t i l t e d  at an angle and an a ir fo i l  
section, a d  is finally applied to finding the variaticn of the 
minimum mcment of inertia alang the length of a twisted. and tapered 
hollow turbine blade. 

oross-sectianal area 

oro8e-eeotio11al- area of root eection 

bouadary 

ohord 

proauct of Inertia abaut; th@ x,y-cuee 

proanct of inertia with reepct to 8xee thraugh oentrofd 
pare3lel t o  x,y-axes 

minimum mcanent of inertia 

mininuam moapent of inertfa at root 

mcrment of' inertia about r e i s  

moment of Inertia about a r i a  throagh centroid psrallel t o  
X-eLlIS 

m n t  of inertia about y-axis 
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. 

Im&, o 

2 

n 

moment of inertia about ax is  through  centroid parallel t o  
y-axis 

minimum I inertia r a t i o  

minimum y inertia ratio 

length of blade 

number of stations  into which area is divided 

reference  coordinate 8188 

principal axe8 about one of whlch moment of iner t ia  of mea 
is m i n i m u m  

location  of.centroid of area re femd t o  x,y-axes 

location of origin of xt,yy'-8xes referred t o  x,y-axes 

angle of x' -axis to x-axis measured in positive counter- 
clockwise direction 

METHOD 

Let x,y be any s e t  of referenoe axes wlth respect  to which 
the  coordinates of the  area under omsideration  are known (fig. 1). 
Let x',y' be the  principal axe8 a t  the  point (%,yo), such that 
the m a e n 2  of inertia of the  area is a minimum about the xr-axiay 
and l e t  x,y be the  coordinates of the  centroid of the area w i t h  
respect  to the x,y axes. Then (reference 1): 

tan 28 = 2 Fo 
I -I 

Y,O x,o 
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Henoe, it can be derived that 

I~ = - F ~  cot e + I ~ , ~  

where 
Fo 

Iy, o-Ix, 0 
a =  

Equation (1) states the well-known fact that the moment of 
inertia w i l l  be leaet about an axis passing  through  the  centroid. 
Equation (2) gives the  angle that t h i s  &xis makes with the x-axis. 
In equation (3), which gives  the minimum  moment of inertia, the sign 
before the radical is BO chosen that the first term on the right 
side of the  equation is negative. 

If the  equations of the contour are known, equations (1) t o  
(3) can be aolved ezactly for the desired  quantitiee. (See the 
appendix.) These equations, however, are  generally unknown and 
approximate methods must be used. 

Assume that the value8 of y defining the area boundary are 
known for n stations  along  the x-axis. These values may be obtained 
by direct measurement from a drawing, or as is generally the cam for 
airfoil sections,  they may be directly  obtahed from a table that 
gives  the values  of y in percentage of chord for a number of stations 
along the chord. The following equatfons  then approximately hold: 

c 
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I 

i=1 

n 

= - 2 CxLY: A q  

is1 . 

n 
Q = - AxI 

i.4 
3 

Also 

The values q and yi ehould be taken at the midpoint of the 
interval Axi. It is convenient to take  equal  intervals Ax, because 
by so doing, Axi moves t o  a position in front of the summation sign 
and thus cansiderecbly 8hOrt0nS omputation. 
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The problem then reduces t o  one of tabulating n values of x 
and y and obtaining the sums of the various products indiuated in 
equations (5). The mln lmum moment of inertia is then found by use 
of equations (3) and (4). The accuracy  with which the factors in  
equations (5) are obtained increases with n, the number of statione 
used. In general, it will be seen from the examples that good 
accuracy Can be obtained by use of relatively few stations. 

In carryipg  out the preceding calculations, care must be taken 
a0 t o  the sign of the quantity Ax. The summation, as sham by the 
arrows in figures 1 and 2, ie in such a direction that the area 
under oonsideratian is always t o  the left;. E the summation is in 
the  direction of increasizlg x, the sign of Ax should 
be positive; if the summatian ie in the  direction of decreasing x, 
the sign Os Ax should be negative. !Fhus, i n  figure 1, Ax is 
positive for C U T V ~ E  Cl and C 3  and negative for curve8 C2 and 
C4. This convention has been followed in  the derivation of equa- 
ti- (5) and b8 followed in their &ppli=ti=. 

Wphical  solution of &. - Equation (3) i e  made nondimeneianal 
if both member8 are divided by &,o. 

r 

c 

d 
02 
d 
rl 

Equation (6) represents an infinite family of straight  lines 
with the miniwua inertia ratio,  as ordinate and 
(Ir,o/Ix,o) - 1 a0 abscissa. (In actual practice, it w i l l  be 

found more convenient t o  use Is,o/& as the  abscissa. ) A l l  the 
lines have a cnmmr#r intercept at &/h,o = 1 and the slopes of 
the lines depend an the inertia parameter a as follows: 

9 0  

" 

It is  evident that the abscissa m o t  become lees than 0 
and the  ordinate cannot be lees than 0 or greater than 1. More- 
'over, there w i l l  be no lines with slopes between 0 and l. Such a 
family is: plotted in figure 3. The lines giving the maximum value 
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of will be merely the  reflections of the  lines in figure 3 
about the  point (1,l) . If the values of a, &,o, and Iy,o have 
been calculated  for a  section,  the values of Im can be obtained 
from figure 3. 

Example 1. - Figure 2(a) shows an el l ipse t i l t e d  a t  an angle of 
P 2  2 

30' t o  the x-axis. The equation of t h i s  ellipse is - 
The area,  the  location of the  centroid,  the moment of iner t ia  about 
the x-axis, the  principal axes through the  centroid, and the minimum 
moment of inertia are t o  be determined. The ell ipse wae divided 
into ten intervals. The quantities i n  equations ( 5 )  are calculated as 
shown in table I. The following values were obtained: 

9 + y' = 1. 

A = 9.516 & = 7.212 
- 
x = 0.000 I& = 2.363 
- 
y = 0.000 8 = 0.521 radian 

The exact  values for the  ellipse are: 

A = 9.425 I, = 7.069 
- 
x = 0.000 & = 2.356 - 
y = 0.000 8 = 0.524 radian 

The decrease in percentage error of & due t o  choosing a 
largeF number of intervals over the ellipse is shown in the follow- 
ing table: 

Error in calculated Number of stations 
value of I& percent 

10 
2 
.3 
.1 

2 
4 
10 
20 

__pT_ Exam le 2 - A Clark Y airfoil is shown In figure 2(b). The 
shape of t h  8 airfoil i n  t e r m  of the chord is given in  table II. 
The quantities In equations (5) are obtained as shown in table III. 
The final answers are: 
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I, = 26,870 ($) 
\ - 

x = 42.05 (5) 

F = 150,600 (5) 
DI~SSIOIP 

Exaaples 1 and 2 w i t h  tables 

=Y = 1,894,000 (5) 
Im = 7087 (5) 

8 = 0.0358 radian 

OF RFSULTS 

I and III show an application of 
the method for obteining the minimum mment of inertia of a r b i t r a r i l y  
ehaped areas. As has already been pointed out, equations (5) are 
approximafe, the degree of approrimation depending upan the number 
of stations considered. It is evident that in t h e  case of the 
ellipse, the  error involved in the use of ten stations is less than 
0.5 percent. Thus, it is unnecessary t o  consider many s ta t ions- to  
achieve good acauracy. 

The number of stations required t o  give a certain  degree of 
acmracy w i l l ,  of course, depend on the ahape of the area M e r  con- 
sideration. In  order t o  obtain good over-all accuracy, areas  that 
have sharp peak6 in their  contours, such as a cross-shaped section, 
w i l l  require more etations In the  vicinity of the peaks than in the 
more unifm par ts .  Fortunately, most ob jecte  dealt with in physical 
problame do not have euah sharp peake. If such an object l a  being 
ooneidered, however,  c-e  must be W e n  in selectfng  the number of 
Intervals and fn dietributing  the intervals. It may be adwmtageous 
to take m a l l  intervals for certain p8rte of the contour and large 
intervale for the re& of the cantour. 

Possible sources of error should be pointed out. If the angle 8 
is very close t o  45O, the dennminator af equation (2) becomes very 
small. If' small m r s  do occur in the  calculation of Iyy0 and 

square root of equation (3). E If,, is a small quantity, a large 
error in the value of could be introduced. Such an error could 
easily be prevented b e a y e  by inspection, it should be obvious 
whether 8 is 45' or -45 . In any case, it l e  better t o  choose the 
x , y l  -axes such that 8 vlll not be close t o  45O. 

=x, 0, it l e  pos8ible that  the wrong si.& will be obtained f o r  the  
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E the  coordinate axes are so chosen that the w e  8 is known 

t o  be emall, an approximate form of equation (3) can be used. For 
small e, a is emall and becomes negligible ccanpeuled t o  1. 
Equation (3) then becomes 

Thus, L, as a minimum w i l l  equal either Iy,o Or &,o, 
whichever is smaller. If, however, the  absolute value of (I3 o-G o) 

is large canpared to  the  neglect of even a a l l  quantitr 
a2 can introduce  large errors in L. 

9 I 

The  method desoribed was used to  oalculate the minimum moment of 
iner t ia  of various  sections  along  the length of a hollow turbine 
blade. Five sections, as shown in figure 4, including  the t i p  and 
root  section were used. The resul ts  and the area variation are 
plotted in dimsnsionlees  coordinates, as shown in  figure 5. These 
variations must be known in order to calculate  accurately  the natural 
vibration  frequencies of the  turbine blades. 

A simple tabular method f o r  obtaining the minimum moment of 
inertia of an arbft rar i ly  shaped section was developed. The area, 
the  -position of the  centroid, the moment of inertia. about an arbi- 
t ra ry   se t  of axes, and the product of iner t ia  were obtained as part 
of t h i s  tabular procedure. Although the accuracy obtained using a 
given number of etatione depends upon the irregularity of the area 
under consideration, it was sham that, in general, high accuracy. 
could be obtained with the me of comparatively few stations. In 
the case of an el l ipse tilted at 30?, accuracy of greater than 0.5 
percent was obtained by the use of ten stations. A final applica- 
t ion was made in calculating the variation of the minimum moment 
of iner t ia  slang the length of 8 hollow turbine blade. 

.- 

Lewis Flight  Propulsion Laboratory, 

Cleveland, Ohio. 
National Advieory Connaittee for Aeronautics, 
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APPEmIX 

Minimum moment of inertia. - Let x,y be the  coordinates of a 
point of a closed  contour re la t ive   to  a given set of x,y-axes; let  
z',y' be the  coordinates of this  point relative t o  the  prlncipal 
axes of the contour  (about which the moment of Inertia is a mi- 
mwn); and let  6 be the angle between the two se ts  of axes. Then, 

where 

follawing equatian is obtained by substituting in equation ( A l )  and 
carrying through the  proper  trigonometric  manipulation: 

"l 

plus sign is UELed. 

Ekact solutlan. - If P(x,y) and r v ,  are continuous 

within and on the boundary of region A, then by use of Gauss' 
theorem (reference 2 ) 

where the integration on the- right is performed in a positive 88-e 
around the boundary C. 

. 

. 
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-om equation (A4) and the fact  that the  line integral  around 

a closed boundary P(x )  d x  equals zero, the follaving equations 

are  evident : 
Jc  

C 

Also 

If the equation of the boundary of the  section  under consider- 
ation is known, the quantities in equation (A5) can then be exactly 
determined by c a r r y i n g  out the line integration  indicated. The 
integration  is in 8 direction auch that the area is always t o  the 
left. 

” 
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TAB- I - SOLUTION  OF EQUATIONS (5 )  FOR ELLIPSE 

To tal  

0.52915 

-. 2646 

2.9801 1.7263 -1.8520 . 
2.6788 1.6367 -1.3229 
2.1742 1.4745 -.7937 
1.5856 1.2592 

-2.3812  1.6727  2.7979 

8.9920 14.2724 

2.7979 

2.1742 
2.6788 

1.5858 
.9946 
-4746 

.0114 

.4681 

2.9ao1 

. i o n  

16.1181 n -11.4320 

Total -11.4320  -16.1181 15.9532 -20.4439 14.2724  -8.9920 

v 
A 3 - C y  A X  = 9.5162 IxI0 = I, - y2A 7.'2119 

- C x y A x  x = -  A - 0.0000 
- 
Y" =y2 A x  = 0.0000 2A 

Iy,o a 5 - x 2 A  17.0578 

A x  - 8.4416 
I y $ O  - Ix.0 

F = -  
2 

rx - - '< A x  = 7.2119 

Iy = - E X %  Ax = 17.0578 

4 = 'Io 2 - IxSo [ 1-(1+ a2)']+IX,, 2.3628 

c 
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TABLE I1 - SHAPE OF CLARK Y AIRFOIL 

Percentage of ohord 

Distance Prom leading edge Lower camber Wpper camber 

0 

063 8.85 7.50 
. 93 7.90 5.00 

1.47 6.50 2.50 
1.93 5.45 1.25 
3.50 305D 

10.00 9.60 . 42 
15.00 10.69 015 
20.00 11.36 

0 1.49 95.00 
0 2.80 90.00 
0 5.22 80.00 
0 7.35 70.00 
0 9.15 60.00 
0 10.52 50.00 
0 11.40 40 . 00 0 11.70 30.00 
03 

100000 . 12 0 
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TABLE 111 - SOLUTION OF EQUATIONS ( 5 )  FOR CLARK Y AIRPOIL 

A x  
-10 

Fo tal 

-5 

Fo t a1 

10 

co tal 

5 

?otal 

X 

10 
20 
30 
40 
50 
60 

80 
70 

90 

97.5 
2.5 

10 
20 
30 
40 
50 

70 
60 

80 
90 

97.5 
2.5 

Y 
9.60 

11.36 
11 70 
11.40 
10.52 

9.15 
7.35 
5.22 
2.80 

79.10 

~~~ 

6.500 
.805 

7.305 

0.42 

0 
0 
0 
0 
Q 
0 
0 

-03 

.45 

1.47 
0 

1.47 

Y2 xg X2Y xY2 Y3 
92.1600 

129.0496 
136.8900 
129.9600 
110.6704 
83.7225 
54.0225 
27.2484 

7 . 8 4 0  

.1764 

.om9 
0 
0 
0 

0 
0 

0 
0 

771.5634 33889.3000 185,617.0000 30,031.6090 7925.4640 

42.2500 
.6480 

42.8980 94.7375 7693.1563  168.8050 275.2466 

. .  

.1773 4.8000 54.0000 I. 7820 0.0741 

0 
2.1609 

2.1609 3.6750 9.1875  5.4022  3.1765 
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/ X ’  

X 

L 

Figure 1. - Arbitrarily shaped section. 

I ’  

(b) Clark Y a i r f o i l .  

Figure 2. - Areas under consideration f o r  minimum 
moment of  inertia. 
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Figure 3. - Variatlon o f  minimum x inert ia  ra t io  Lm/Ix,o with rat io  oP minimum x inert ia   rat io  
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18 NACA RM E9HIO 

Distance 
from root 

( in .  1 
0 

I N C H E S  
0 

1 

2 

3 

4 



NACA RM E9H 10 19 

0 .2 04 e 6  08 

Distance from roo t ,  x / Z  

Figure 5 .  - Variation of  minimum  moment of  i n e r t i a  and 
area  a long  length of typ ica l  hollow turbine  blade. 


